

Mush Documentation

Mush is a light weight type-based dependency injection framework aimed at
enabling the easy testing and re-use of chunks of code that make up
scripts.

	How Mush works
	Constructing runners

	Configuring Resources

	Labels

	Plugs

	Context manager resources

	Testing

	Debugging

	Example Usage
	Encapsulating the re-usable parts of scripts

	Writing the specific parts of your script

	Assembling the components into a script

	Testing

	API Reference

For details of how to install the package or get involved in its
development, please see the sections below:

	Installation Instructions

	Development

	Changes

	License

Indices and tables

	Index

	Module Index

	Search Page

How Mush works

Note

This documentation explains how Mush works using fairly abstract
examples. If you’d prefer more “real world” examples please see the
Example Usage documentation.

Constructing runners

Mush works by assembling a number of callables into a Runner:

from mush import Runner

def func1():
 print('func1')

def func2():
 print('func2')

runner = Runner(func1, func2)

Once assembled, a runner can be called any number of times. Each time
it is called, it will call each of its callables in turn:

>>> runner()
func1
func2

More callables can be added to a runner:

def func3():
 print('func3')

runner.add(func3)

If you want to add several callables in one go, you can use the
runner’s extend() method:

def func4():
 print('func4')

def func5():
 print('func5')

runner.extend(func4, func5)

Now, when called, the runner will call all five functions:

>>> runner()
func1
func2
func3
func4
func5

Runners can also be added together to create a new runner:

runner1 = Runner(func1)
runner2 = Runner(func2)
runner3 = runner1 + runner2

This addition does not modify the existing runners, but does give the
result you’d expect:

>>> runner1()
func1
>>> runner2()
func2
>>> runner3()
func1
func2

This can also be done by passing runners in when creating a new runner
or calling the extend method on a runner, for example:

runner1 = Runner(func1)
runner2 = Runner(func2)
runner4_1 = Runner(runner1, runner2)
runner4_2 = Runner()
runner4_2.extend(runner1, runner2)

In both cases, the results are as you would expect:

>>> runner4_1()
func1
func2
>>> runner4_2()
func1
func2

Finally, runners can be cloned, providing a way to encapsulate commonly
used base runners that can then be extended for each specific use case:

runner5 = runner3.clone()
runner5.add(func4)

The existing runner is not modified, while the new runner behaves as
expected:

>>> runner3()
func1
func2
>>> runner5()
func1
func2
func4

Configuring Resources

Where Mush becomes useful is when the callables in a runner either
produce or require objects of a certain type. Given the right
configuration, Mush will wire these together enabling you to write
easily testable and reusable callables that encapsulate specific
pieces of functionality. This configuration is done either
imperatively, declaratively or using a combination of the two styles
as described in the sections below.

For the examples, we’ll assume we have three types of resources:

class Apple:
 def __str__(self):
 return 'an apple'
 __repr__ = __str__

class Orange:
 def __str__(self):
 return 'an orange'
 __repr__ = __str__

class Juice:
 def __str__(self):
 return 'a refreshing fruit beverage'
 __repr__ = __str__

Specifying requirements

When callables take parameters, Mush can be configured to pass objects of the
correct type that have been returned from previous callables in the runner.
For example, consider the following functions:

def apple_tree():
 print('I made an apple')
 return Apple()

def magician(fruit):
 print('I turned {0} into an orange'.format(fruit))
 return Orange()

def juicer(fruit1, fruit2):
 print('I made juice out of {0} and {1}'.format(fruit1, fruit2))

The requirements are specified by passing the required type in the requires
parameter when adding the callable to the runner using add().
If more complex requirements need to be specified, a requires instance
can be passed which accepts both positional and keyword parameters that
specify the types required by the callable being added:

from mush import Runner, requires

runner = Runner()
runner.add(apple_tree)
runner.add(magician, requires=Apple)
runner.add(juicer, requires(Apple, fruit2=Orange))

Calling this runner will now manage the resources, collecting them and
passing them in as configured:

>>> runner()
I made an apple
I turned an apple into an orange
I made juice out of an apple and an orange

Optional requirements

It may be that, while a callable needs an object of a particular type, a default
can be used if no such object is present. Runners can be configured to
take this into account. Take the following function:

def greet(name='stranger'):
 print('Hello ' + name + '!')

If a name is not always be available, it can be added to a runner as follows:

from mush import Runner, optional

runner = Runner()
runner.add(greet, requires=optional(str))

Now, when this runner is called, the default will be used:

>>> runner()
Hello stranger!

The same callable can be added to a runner where the required strings is
available:

from mush import Runner, optional

def my_name_is():
 return 'Slim Shady'

runner = Runner(my_name_is)
runner.add(greet, requires=optional(str))

In this case, the string returned will be used:

>>> runner()
Hello Slim Shady!

Using parts of a resource

Resources can have attributes or items that are directly required by callables.
For example, consider these two functions that return such resources:

class Stuff(object):
 fruit = 'apple'
 tree = dict(fruit='pear')

def some_attributes():
 return Stuff()

def some_items():
 return dict(fruit='orange')

Also consider this function:

def pick(fruit1, fruit2, fruit3):
 print('I picked {0}, {1} and {2}'.format(fruit1, fruit2, fruit3))

All three can be added to a runner such that mush will pass the correct parts
of the returns resources through to the pick() function:

from mush import Runner, attr, item, requires

runner = Runner(some_attributes, some_items)
runner.add(pick, requires(fruit1=attr(Stuff, 'fruit'),
 fruit2=item(dict, 'fruit'),
 fruit3=item(attr(Stuff, 'tree'), 'fruit')))

So now we can pick fruit from some interesting places:

>>> runner()
I picked apple, orange and pear

The pick() function, however, remains usable and testable on its own:

>>> pick('apple', 'orange', 'pear')
I picked apple, orange and pear

Specifying returned resources

As seen above, Mush will track resources returned by callables based on the type
of any object returned. This is usually what you want, but in some cases you
may want to specify something different.
For example, if you have a callable that returns a sequence of resources, this
would be added to a runner as follows:

from mush import Runner, returns_sequence

def all_fruit():
 print('I made fruit')
 return Apple(), Orange()

runner = Runner()
runner.add(all_fruit, returns=returns_sequence())
runner.add(juicer, requires(Apple, Orange))

Now, the juicer will use all the fruit returned:

>>> runner()
I made fruit
I made juice out of an apple and an orange

In rarer circumstances, you may need to override the types returned by a
callable. This can be done as follows:

from mush import Runner, returns

class Tomato:
 def __str__(self):
 return 'a tomato'

class Cucumber:
 def __str__(self):
 return 'a cucumber'

def vegetables():
 print('I made vegetables')
 return Tomato(), Cucumber()

runner = Runner()
runner.add(vegetables, returns=returns(Apple, Orange))
runner.add(juicer, requires(Apple, Orange))

Now, even when a callable requires fruit, we can force it to be happy with
vegetables:

>>> runner()
I made vegetables
I made juice out of a tomato and a cucumber

The returns indicator can be used even if a single object is returned.

Another way that the type used to track the resource can be different from the
type of the resource itself is if a callable returns a mapping and Mush is
configured to use the types from that mapping:

from mush import Runner, returns_mapping

def desperation():
 print('I sold vegetables as fruit')
 return {Apple: Tomato(), Orange: Cucumber()}

runner = Runner()
runner.add(desperation, returns=returns_mapping())
runner.add(juicer, requires(Apple, Orange))

One again, we can happily make juice out of vegetables:

>>> runner()
I sold vegetables as fruit
I made juice out of a tomato and a cucumber

Finally, if you have a callable that returns results that you wish to ignore,
you can do so using nothing:

from mush import Runner, nothing

def spam():
 return 'spam'

runner = Runner()
runner.add(spam, returns=nothing)

Named resources

Sometimes the types of resources are too common for them to uniquely identify
a resource:

def age():
 return 37

def meaning():
 return 42

A callable such as the following cannot be configured to require the correct
resource from these two functions by type alone:

def profound(age, it):
 print('by the age of %s I realised the meaning of life was %s' % (
 age, it
))

For these situations, Mush supports the ability to name a resource using a
string:

runner = Runner()
runner.add(age, returns='age')
runner.add(meaning, returns='meaning')
runner.add(profound, requires('age', it='meaning'))

Anywhere that a type can be used, a string name can be used instead:

>>> runner()
by the age of 37 I realised the meaning of life was 42

Using Type Annotations

While the imperative configuration used so far means that callables do not
need to be modified, Python’s type annotations can also be used to specify
requirements and returned resources:

from mush import requires

def apple_tree():
 print('I made an apple')
 return Apple()

def magician(fruit: Apple) -> 'citrus':
 print('I turned {0} into an orange'.format(fruit))
 return Orange()

def juicer(fruit1: Apple, fruit2: 'citrus'):
 print('I made juice out of {0} and {1}'.format(fruit1, fruit2))
 return Juice()

These can now be combined into a runner and executed. The runner will
extract the requirements from the type annotations and will use them to
map the parameters as appropriate:

>>> runner = Runner(apple_tree, magician, juicer)
>>> runner()
I made an apple
I turned an apple into an orange
I made juice out of an apple and an orange
a refreshing fruit beverage

Declarative configuration

When type annotations are not available, either because they’re being used
for something else or because of the version of Python being used, the helpers
for specifying requirements and return types can also be used as decorators:

from mush import requires

def apple_tree():
 print('I made an apple')
 return Apple()

@requires(Apple)
@returns('citrus')
def magician(fruit):
 print('I turned {0} into an orange'.format(fruit))
 return Orange()

@requires(fruit1=Apple, fruit2='citrus')
def juicer(fruit1, fruit2):
 print('I made juice out of {0} and {1}'.format(fruit1, fruit2))
 return Juice()

These can now be combined into a runner and executed. The runner will
extract the requirements stored by the decorator and will use them to
map the parameters as appropriate:

>>> runner = Runner(apple_tree, magician, juicer)
>>> runner()
I made an apple
I turned an apple into an orange
I made juice out of an apple and an orange
a refreshing fruit beverage

Default configuration

If no declarations are made using either decorators or type annotations,
then arguments that are needed by a callable will be looked up based on the
name of the argument:

from mush import requires

def apple_tree() -> 'apple':
 print('I made an apple')
 return Apple()

def magician(apple) -> 'citrus':
 print('I turned {0} into an orange'.format(apple))
 return Orange()

def juicer(apple, citrus):
 print('I made juice out of {0} and {1}'.format(apple, citrus))
 return Juice()

These can now be combined into a runner and executed. The runner will
guess the requirements base on the names of the arguments for each function
and will use them to map the parameters as appropriate:

>>> runner = Runner(apple_tree, magician, juicer)
>>> runner()
I made an apple
I turned an apple into an orange
I made juice out of an apple and an orange
a refreshing fruit beverage

If an argument has a default, then the requirement will be made
optional.

Configuration Precedence

The four styles of configuration are entirely interchangeable and you can
use any combination that suites your requirements.

In terms of precedence, requirements and returned resource specifications
will be used in the following order, with the first one found being the one
that is used:

	Imperative configuration.

	Declarative configuration.

	Type annotations.

	Default configuration.

The default configuration for requirements is described
above.

The default configuration for return values is that a callable’s
return value is used as a resource and will be registered
against the type of the object returned. The
returns_result_type declaration encapsulates this behaviour.

Labels

One of the motivating reasons for Mush to be created was the ability to insert
callables at a point in a runner other than the end. This allows abstraction
of common sequences of calls without the risks of extracting them into a base
class.

The points at which more callables can be inserted are created by specifying a
label when adding a callable to the runner. This marks the point at which that
callable is included so that it can be retrieved and appended to later. As an
example, consider a ring and some things that can be done to it:

class Ring:
 def __str__(self):
 return 'a ring'

def forge():
 return Ring()

def engrave(ring):
 print('engraving {0}'.format(ring))

These might be added to a runner as follows:

from mush import Runner

runner = Runner()
runner.add(forge)
runner.add_label('forged')
runner.add(engrave, requires=Ring)
runner.add_label('engraved')

Now, suppose we want to polish the ring before it’s engraved and then
package it up when we’re done:

def polish(ring):
 print('polishing {0}'.format(ring))

def package(ring):
 print('packaging {0}'.format(ring))

We can insert these callables into the runner at the right points as follows:

runner['forged'].add(polish, requires=Ring)
runner.add(package, requires=Ring)

This results in the desired call order:

>>> runner()
polishing a ring
engraving a ring
packaging a ring

Now, suppose we want to polish the ring again after it’s been engraved. We can
insert another callable at the appropriate point:

def more_polish(ring):
 print('polishing {0} again'.format(ring))

runner['engraved'].add(more_polish, requires=Ring)

Mush will do the right thing when this runner is called:

>>> runner()
polishing a ring
engraving a ring
polishing a ring again
packaging a ring

When using labels, it’s often good to be able to see exactly what is in a
runner, what order it is in and where any labels point. For this reason,
the representation of a runner gives all this information:

>>> runner
<Runner>
 <function forge ...> requires() returns_result_type()
 <function polish ...> requires(Ring) returns_result_type() <-- forged
 <function engrave ...> requires(Ring) returns_result_type()
 <function more_polish ...> requires(Ring) returns_result_type() <-- engraved
 <function package at ...> requires(Ring) returns_result_type()
</Runner>

As you can see above, when a callable is inserted at a label, the label
moves to that callable. You may wish to keep track of the initial point that
was labelled, so Mush supports multiple labels at each point:

>>> runner = Runner()
>>> point = runner.add(forge)
>>> point.add_label('before_polish')
>>> point.add_label('after_polish')
>>> runner
<Runner>
 <function forge ...> requires() returns_result_type() <-- after_polish, before_polish
</Runner>

Now, when you add to a specific label, only that label is moved:

>>> point = runner['after_polish']
>>> point.add(polish)
>>> runner
<Runner>
 <function forge ...> requires() returns_result_type() <-- before_polish
 <function polish ...> requires('ring') returns_result_type() <-- after_polish
</Runner>

Of course, you can still add to the end of the runner:

>>> runner.add(package)
<mush.modifier.Modifier...>
>>> runner
<Runner>
 <function forge ...> requires() returns_result_type() <-- before_polish
 <function polish ...> requires('ring') returns_result_type() <-- after_polish
 <function package ...> requires('ring') returns_result_type()
</Runner>

However, the point modifier returned by getting a label from a runner will
keep on moving the label as more callables are added using it:

>>> point.add(more_polish)
>>> runner
<Runner>
 <function forge ...> requires() returns_result_type() <-- before_polish
 <function polish ...> requires('ring') returns_result_type()
 <function more_polish ...> requires('ring') returns_result_type() <-- after_polish
 <function package ...> requires('ring') returns_result_type()
</Runner>

Plugs

You may run into situations where you wish to group callables together and
add them in one go. Indeed, it might only make sense to add all callables in
a group and would cause problems to add them individually.

For example, suppose we have this runner:

def prepare():
 print('cleaning kitchen table')

def wash(produce):
 print('washing '+str(produce))

def finished():
 print('service please!')

kitchen_runner = Runner()
kitchen_runner.add(prepare)
kitchen_runner.add_label('what')
kitchen_runner.add(wash, requires='produce')
kitchen_runner.add_label('how')
kitchen_runner.add(finished)

For any use of the kitchen, we need to specify both what to use and how we want
to use it once it’s washed. This can neatly be done as follows:

from mush import Plug

class JuicePlug(Plug):

 def what(self) -> 'produce':
 return Apple()

 def how(self, produce):
 print('juicing '+str(produce))

runner = kitchen_runner.clone()
JuicePlug().add_to(runner)

The runner behaves as we require:

>>> runner()
cleaning kitchen table
washing an apple
juicing an apple
service please!

It may be that we want our plug to have helper methods, in which case they can
either be named with a leading underscore, or the plug can be set up to only
add explicitly marked methods, for example:

from mush.plug import Plug, insert

class JuicePlug(Plug):

 explicit = True

 def juice(self, produce):
 print('juicing '+str(produce))

 @insert()
 def what(self) -> 'produce':
 return Apple()

 @insert()
 def how(self, produce: 'produce'):
 self.juice(produce)

runner = kitchen_runner.clone()
JuicePlug().add_to(runner)

The runner behaves as before:

>>> runner()
cleaning kitchen table
washing an apple
juicing an apple
service please!

As you can see, this might make for a lot of decorating if you only have one
helper method. If that’s the case, you can just tell the plug to ignore the
helper:

from mush.plug import Plug, ignore

class JuicePlug(Plug):

 @ignore()
 def juice(self, produce):
 print('juicing '+str(produce))

 def what(self) -> 'produce':
 return Apple()

 def how(self, produce: 'produce'):
 self.juice(produce)

runner = kitchen_runner.clone()
JuicePlug().add_to(runner)

The runner still behaves as before:

>>> runner()
cleaning kitchen table
washing an apple
juicing an apple
service please!

It may be that it makes sense to give your method a name different to
the label you wish to add it at. You may also wish to have a plug add a method
to the end of the runner where there is no label. Both of these are supported:

from mush.plug import Plug, insert, append

class JuicePlug(Plug):

 @insert(label='what')
 def pick_fruit(self) -> 'produce':
 return Apple()

 def how(self, produce: 'produce'):
 print('juicing '+str(produce))

 @append()
 def relax(self):
 print('...and relax')

runner = kitchen_runner.clone()
JuicePlug().add_to(runner)

The runner now behaves as required:

>>> runner()
cleaning kitchen table
washing an apple
juicing an apple
service please!
...and relax

Context manager resources

A frequent requirement when writing scripts is to make sure that
when unexpected things happen they are logged, transactions are
aborted, and other necessary cleanup is done. Mush supports this
pattern by allowing context managers to be added as callables:

from mush import Runner, requires

class Transactions(object):

 def __enter__(self):
 print('starting transaction')

 def __exit__(self, type, obj, tb):
 if type:
 print(obj)
 print('aborting transaction')
 else:
 print('committing transaction')
 return True

def a_func():
 print('doing my thing')

def good_func():
 print('I have done my thing')

def bad_func():
 raise Exception("I don't want to do my thing")

The context manager is wrapped around all callables that are called
after it:

>>> runner = Runner(Transactions, a_func, good_func)
>>> runner()
starting transaction
doing my thing
I have done my thing
committing transaction

This gives it a chance to clear up when things go wrong:

>>> runner = Runner(Transactions, a_func, bad_func)
>>> runner()
starting transaction
doing my thing
I don't want to do my thing
aborting transaction

Testing

Mush has a couple of features to help with automated testing of runners.
For example, if you wanted to test a runner that got configuration by calling
a remote web service:

def load_config() -> 'config':
 return json.loads(urllib2.urlopen('...').read())

def do_stuff(username: item('config', 'username'),
 password: item('config', 'password')):
 print('doing stuff as ' + username + ' with '+ password)

runner = Runner(load_config, do_stuff)

When testing this runner, we may want to inject a hard-coded config. This can
be done by cloning the original runner and replacing the load_config()
callable:

>>> def test_config():
... return dict(username='test', password='pw')
>>> test_runner = runner.clone()
>>> test_runner.replace(load_config, test_config)
>>> test_runner()
doing stuff as test with pw

If you have a base runner such as this:

from argparse import ArgumentParser, Namespace

def base_args(parser):
 parser.add_argument('config_url')

def parse_args(parser):
 return parser.parse_args()

def load_config():
 return json.loads(urllib2.urlopen('...').read())

def finalise_things():
 print('all done')

base_runner = Runner(ArgumentParser)
base_runner.add(base_args, requires=ArgumentParser, label='args')
base_runner.add(parse_args, requires=ArgumentParser)
point = base_runner.add(load_config, requires=attr(Namespace, 'config_url'),
 returns='config')
point.add_label('body')
base_runner.add(finalise_things, label='ending')

That runner might be used for a specific script as follows:

def job_args(parser: ArgumentParser):
 parser.add_argument('--colour')

def do_stuff(username: item('config', 'username'),
 colour: attr(Namespace, 'colour')):
 print(username + ' is '+ colour)

runner = base_runner.clone()
runner['args'].add(job_args)
runner['body'].add(do_stuff)

To test this runner, we want to use a dummy configuration and command line
and not have any finalisation take place. This can be achieved with a helper
function such as the following:

def run_with(source_runner, config, argv):
 runner = Runner(ArgumentParser)
 runner.extend(source_runner.clone(added_using='args'))
 runner.add(lambda parser: parser.parse_args(argv),
 requires=ArgumentParser)
 runner.add(lambda: config, returns='config')
 runner.extend(source_runner.clone(added_using='body'))
 runner()

The helper can then be used as follows:

>>> run_with(runner,
... config=dict(username='test', password='pw'),
... argv=['--colour', 'red'])
test is red

Debugging

Mush has a couple of features to aid debugging of runners. The first of which
is that the representation of a runner will show everything in it, in the order
it will be called and what each callable has been declared as requiring and
returning along with where any labels currently point.

For example, consider this runner:

from mush import Runner

def make_config() -> 'config':
 return {'foo': 'bar'}

def connect(foo: item('config', 'foo')):
 return 'connection'

def process(connection):
 print('using ' + repr(connection))

runner = Runner()
point = runner.add(make_config, label='config')
point.add(connect)
runner.add(process)

To see how the configuration panned out, we would look at the repr() [https://docs.python.org/dev/library/functions.html#repr]:

>>> runner
<Runner>
 <function make_config ...> requires() returns('config')
 <function connect ...> requires(foo='config'['foo']) returns_result_type() <-- config
 <function process ...> requires('connection') returns_result_type()
</Runner>

As you can see, there is a problem with this configuration that will be exposed
when it is run. To help make sense of these kinds of problems, Mush will add
more context when a TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] or ContextError
is raised.

Example Usage

To show how Mush works from a more practical point of view, let’s
start by looking at a simple script that covers several common
patterns:

from argparse import ArgumentParser
from .configparser import RawConfigParser
import logging, os, sqlite3, sys

log = logging.getLogger()

def main():
 parser = ArgumentParser()
 parser.add_argument('config', help='Path to .ini file')
 parser.add_argument('--quiet', action='store_true',
 help='Log less to the console')
 parser.add_argument('--verbose', action='store_true',
 help='Log more to the console')
 parser.add_argument('path', help='Path to the file to process')

 args = parser.parse_args()

 config = RawConfigParser()
 config.read(args.config)

 handler = logging.FileHandler(config.get('main', 'log'))
 handler.setLevel(logging.DEBUG)
 log.addHandler(handler)
 log.setLevel(logging.DEBUG)

 if not args.quiet:
 handler = logging.StreamHandler(sys.stderr)
 handler.setLevel(logging.DEBUG if args.verbose else logging.INFO)
 log.addHandler(handler)

 conn = sqlite3.connect(config.get('main', 'db'))

 try:
 filename = os.path.basename(args.path)
 with open(args.path) as source:
 conn.execute('insert into notes values (?, ?)',
 (filename, source.read()))
 conn.commit()
 log.info('Successfully added %r', filename)
 except:
 log.exception('Something went wrong')

if __name__ == '__main__':
 main()

As you can see, the script above takes some command line arguments,
loads some configuration from a file, sets up log handling and then
loads a file into a database. While simple and effective, this script
is hard to test. Even using the TempDirectory [http://testfixtures.readthedocs.io/en/latest/api.html#testfixtures.TempDirectory]
and Replacer [http://testfixtures.readthedocs.io/en/latest/api.html#testfixtures.Replacer] helpers from the TestFixtures [http://pythonhosted.org/testfixtures]
package, the only way to do so is to write one or more high level
tests such as the following:

from testfixtures import TempDirectory, Replacer, OutputCapture
import sqlite3

class Tests(TestCase):

 def test_main(self):
 with TempDirectory() as d:
 # setup db
 db_path = d.getpath('sqlite.db')
 conn = sqlite3.connect(db_path)
 conn.execute('create table notes (filename varchar, text varchar)')
 conn.commit()
 # setup config
 config = d.write('config.ini', '''
[main]
db = %s
log = %s
''' % (db_path, d.getpath('script.log')), 'ascii')
 # setup file to read
 source = d.write('test.txt', 'some text', 'ascii')
 with Replacer() as r:
 r.replace('sys.argv', ['script.py', config, source, '--quiet'])
 main()
 # check results
 self.assertEqual(
 conn.execute('select * from notes').fetchall(),
 [('test.txt', 'some text')]
)

The problem is that, in order to test the different paths through the
small piece of logic at the end of the script, we have to work around
all the set up and handling done by the rest of the script.

This also makes it hard to re-use parts of the script. It’s common for
a project to have several scripts, all of which get some config from
the same file, have the same logging options and often use the same
database connection.

Encapsulating the re-usable parts of scripts

So, let’s start by looking at how these common sections of code can be
extracted into re-usable functions that can be assembled by Mush into
scripts:

from argparse import ArgumentParser, Namespace
from .configparser import RawConfigParser
from mush import Runner, requires, attr, item
import logging, os, sqlite3, sys

log = logging.getLogger()

def base_options(parser: ArgumentParser):
 parser.add_argument('config', help='Path to .ini file')
 parser.add_argument('--quiet', action='store_true',
 help='Log less to the console')
 parser.add_argument('--verbose', action='store_true',
 help='Log more to the console')

def parse_args(parser: ArgumentParser):
 return parser.parse_args()

def parse_config(args: Namespace) -> 'config':
 config = RawConfigParser()
 config.read(args.config)
 return dict(config.items('main'))

def setup_logging(log_path, quiet=False, verbose=False):
 handler = logging.FileHandler(log_path)
 handler.setLevel(logging.DEBUG)
 log.addHandler(handler)
 if not quiet:
 handler = logging.StreamHandler(sys.stderr)
 handler.setLevel(logging.DEBUG if verbose else logging.INFO)
 log.addHandler(handler)

class DatabaseHandler:
 def __init__(self, db_path):
 self.conn = sqlite3.connect(db_path)
 def __enter__(self):
 return self
 def __exit__(self, type, obj, tb):
 if type:
 log.exception('Something went wrong')
 self.conn.rollback()

We start with a function that adds the options needed by all our
scripts to an argparse [https://docs.python.org/dev/library/argparse.html#module-argparse] parser. This uses the requires
decorator to tell Mush that it must be called with an
ArgumentParser [https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser] instance. See
Configuring Resources for more details.

Next, we have a function that calls
parse_args() [https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser.parse_args] on the parser and returns
the resulting Namespace [https://docs.python.org/dev/library/argparse.html#argparse.Namespace].
The parse_config() function reads configuration from a file specified
as a command line argument and so requires the Namespace [https://docs.python.org/dev/library/argparse.html#argparse.Namespace].
Since the config is a dict [https://docs.python.org/dev/library/stdtypes.html#dict], we configure it as a named rather than
typed resource. See Named resources for more details.

Finally, there is a function that configures log handling and a
context manager that provides a database connection and handles
exceptions that occur by logging them and aborting the
transaction. Context managers like this are handled by Mush in a
specific way, see Context manager resources for more details.

Each of these components can be separately and thoroughly tested. The
Mush decorations are inert to all but the Mush Runner,
meaning that they can be used independently of Mush in whatever way is
convenient. As an example, the following tests use a
TempDirectory [http://testfixtures.readthedocs.io/en/latest/api.html#testfixtures.TempDirectory] and a
LogCapture [http://testfixtures.readthedocs.io/en/latest/api.html#testfixtures.LogCapture] to fully test the database-handling
context manager:

class DatabaseHandlerTests(TestCase):

 def setUp(self):
 self.dir = TempDirectory()
 self.addCleanup(self.dir.cleanup)
 self.db_path = self.dir.getpath('test.db')
 self.conn = sqlite3.connect(self.db_path)
 self.conn.execute('create table notes '
 '(filename varchar, text varchar)')
 self.conn.commit()
 self.log = LogCapture()
 self.addCleanup(self.log.uninstall)

 def test_normal(self):
 with DatabaseHandler(self.db_path) as handler:
 handler.conn.execute('insert into notes values (?, ?)',
 ('test.txt', 'a note'))
 handler.conn.commit()
 # check the row was inserted and committed
 curs = self.conn.cursor()
 curs.execute('select * from notes')
 self.assertEqual(curs.fetchall(), [('test.txt', 'a note')])
 # check there was no logging
 self.log.check()

 def test_exception(self):
 with ShouldRaise(Exception('foo')):
 with DatabaseHandler(self.db_path) as handler:
 handler.conn.execute('insert into notes values (?, ?)',
 ('test.txt', 'a note'))
 raise Exception('foo')
 # check the row not inserted and the transaction was rolled back
 curs = handler.conn.cursor()
 curs.execute('select * from notes')
 self.assertEqual(curs.fetchall(), [])
 # check the error was logged
 self.log.check(('root', 'ERROR', 'Something went wrong'))

Writing the specific parts of your script

Now that all the re-usable parts of the script have been abstracted,
writing a specific script becomes a case of writing just two
functions:

def args(parser):
 parser.add_argument('path', help='Path to the file to process')

def do(conn, path):
 filename = os.path.basename(path)
 with open(path) as source:
 conn.execute('insert into notes values (?, ?)',
 (filename, source.read()))
 conn.commit()
 log.info('Successfully added %r', filename)

As you can imagine, this much smaller set of code is simpler to test
and easier to maintain.

Assembling the components into a script

So, we now have a library of re-usable components and the specific
callables we require for the current script. All we need to do now is
assemble these parts into the final script. The full details of this
are covered in Constructing runners but two common patterns are
covered below.

Cloning

With this pattern, a “base runner” is created, usually in the same
place that other re-usable parts of the original script are located:

from mush import Runner, requires, attr, item
base_runner = Runner(ArgumentParser)
base_runner.add(base_options, label='args')
base_runner.extend(parse_args, parse_config)
base_runner.add(setup_logging, requires(
 log_path = item('config', 'log'),
 quiet = attr(Namespace, 'quiet'),
 verbose = attr(Namespace, 'verbose')
))

The code above shows how to label a point, args in this case, enabling
callables to be inserted at that point at a later time. See Labels
for full details.
It also shows some different ways of getting Mush to pass parts
of an object returned from a previous callable to the parameters of
another callable. See Using parts of a resource for full details.

Now, for each specific script, the base runner is cloned and the
script-specific parts added to the clone leaving a callable that can
be put in the usual block at the bottom of the script:

main = base_runner.clone()
main['args'].add(args, requires=ArgumentParser)
main.add(DatabaseHandler, requires=item('config', 'db'))
main.add(do,
 requires(attr(DatabaseHandler, 'conn'), attr(Namespace, 'path')))

if __name__ == '__main__':
 main()

Using a factory

This pattern is most useful when you have lots of scripts that
all follow a similar pattern when it comes to assembling the runner
from the common parts and the specific parts. For example, if all
your scripts take a path to a config file and a path to a file that
needs processing, you can write a factory function that returns a
runner based on the callable that does the work as follows:

def options(parser):
 parser.add_argument('config', help='Path to .ini file')
 parser.add_argument('--quiet', action='store_true',
 help='Log less to the console')
 parser.add_argument('--verbose', action='store_true',
 help='Log more to the console')
 parser.add_argument('path', help='Path to the file to process')

def make_runner(do):
 runner = Runner(ArgumentParser)
 runner.add(options, requires=ArgumentParser)
 runner.add(parse_args, requires=ArgumentParser)
 runner.add(parse_config, requires=Namespace)
 runner.add(setup_logging, requires(
 log_path = item('config', 'log'),
 quiet = attr(Namespace, 'quiet'),
 verbose = attr(Namespace, 'verbose')
))
 runner.add(DatabaseHandler, requires=item('config', 'db'))
 runner.add(
 do,
 requires(attr(DatabaseHandler, 'conn'), attr(Namespace, 'path'))
)
 return runner

With this in place, the specific script becomes the do()
function we abstracted above and a very short call to the factory:

main = make_runner(do)

A combination of the clone and factory patterns can also be used to
get the best of both worlds. Setting up several base runners that are
clones of a parent runner and having factories that take common
callable patterns and return complete runners can be very powerful.

Testing

The examples above have shown how using Mush can make it easier to
have smaller components that are easier to re-use and test, however
care should still be taken with testing. In particular, it’s a good
idea to have some integration tests that exercise the whole runner
checking that it behaves as expected when all command line options are
specified and when just the defaults are used.

When using the factory pattern, the factories themselves should be
unit tested. It can also make tests easier to write by having a
“testing runner” that sets up the required resources, such as database
connections, while maybe doing some things differently such as not
reading a configuration file from disk or using a
LogCapture [http://testfixtures.readthedocs.io/en/latest/api.html#testfixtures.LogCapture] instead of file or stream log
handlers.

Some specific tools that Mush provides to aid automated testing are covered in
Testing.

API Reference

	
class mush.Runner(*objects)

	A chain of callables along with declarations of their required and
returned resources along with tools to manage the order in which they
will be called.

	
__add__(other)

	Return a new Runner containing the contents of the two
Runner instances being added together.

	
__call__(context=None)

	Execute the callables in this runner in the required order
storing objects that are returned and providing them as
arguments or keyword parameters when required.

A runner may be called multiple times. Each time a new
Context will be created meaning that no required
objects are kept between calls and all callables will be
called each time.

	Parameters:	context – Used for passing a context when context managers are used.
You should never need to pass this parameter.

	
__getitem__(label)

	Retrieve a Modifier for a previous labelled point in
the runner.

	
add(obj, requires=None, returns=None, label=None)

	Add a callable to the runner.

	Parameters:	
	obj – The callable to be added.

	requires – The resources to required as parameters when calling
obj. These can be specified by passing a single
type, a string name or a requires object.

	returns – The resources that obj will return.
These can be specified as a single
type, a string name or a returns,
returns_mapping, returns_sequence
object.

	label – If specified, this is a string that adds a label to the
point where obj is added that can later be retrieved
with Runner.__getitem__().

	
add_label(label)

	Add a label to the the point currently at the end of the runner.

	
clone(start_label=None, end_label=None, include_start=False, include_end=False, added_using=None)

	Return a copy of this Runner.

	Parameters:	
	start_label – An optional string specifying the point at which to start cloning.

	end_label – An optional string specifying the point at which to stop cloning.

	include_start – If True, the point specified in start_label will be included
in the cloned runner.

	include_end – If True, the point specified in end_label will be included
in the cloned runner.

	added_using – An optional string specifying that only points added using the
label specified in this option should be cloned.
This filtering is applied in addition to the above options.

	
extend(*objs)

	Add the specified callables to this runner.

If any of the objects passed is a Runner, the contents of that
runner will be added to this runner.

	
replace(original, replacement, requires=None, returns=None)

	Replace all instances of one callable with another.

No changes in requirements or call ordering will be made unless the
replacements has been decorated with and requirements, or either
requires or returns have been specified.

	Parameters:	
	requires – The resources to required as parameters when calling
obj. These can be specified by passing a single
type, a string name or a requires object.

	returns – The resources that obj will return.
These can be specified as a single
type, a string name or a returns,
returns_mapping, returns_sequence
object.

	
class mush.requires(*args, **kw)

	Represents requirements for a particular callable.

The passed in args and kw should map to the types, including
any required how, for the matching
arguments or keyword parameters the callable requires.

String names for resources must be used instead of types where the callable
returning those resources is configured to return the named resource.

	
__iter__()

	When iterated over, yields tuples representing individual
types required by arguments or keyword parameters in the form
(keyword_name, decorated_type).

If the keyword name is None, then the type is for
a positional argument.

	
class mush.optional(type, *names)

	A how that indicates the callable requires the
wrapped requirement only if it’s present in the Context.

	
class mush.returns_result_type

	Default declaration that indicates a callable’s return value
should be used as a resource based on the type of the object returned.

None is ignored as a return value.

	
class mush.returns_mapping

	Declaration that indicates a callable returns a mapping of type or name
to resource.

	
class mush.returns_sequence

	Declaration that indicates a callable’s returns a sequence of values
that should be used as a resources based on the type of the object returned.

Any None values in the sequence are ignored.

	
class mush.returns(*args)

	Declaration that specified names for returned resources or overrides
the type of a returned resource.

This declaration can be used to indicate the type or name of a single
returned resource or, if multiple arguments are passed, that the callable
will return a sequence of values where each one should be named or have its
type overridden.

	
class mush.attr(type, *names)

	A how that indicates the callable requires the named
attribute from the decorated type.

	
class mush.item(type, *names)

	A how that indicates the callable requires the named
item from the decorated type.

	
class mush.Plug

	Base class for a ‘plug’ that can add to several points in a runner.

	
add_to(runner)

	Add methods of the instance to the supplied runner.
By default, all methods will be added and the name of the method will be
used as the label in the runner at which the method will be added.
If no such label exists, a KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] will be raised.

If explicit is True, then only methods decorated with an
insert will be added.

	
class mush.context.Context

	Stores resources for a particular run.

	
add(it, type)

	Add a resource to the context.

Optionally specify the type to use for the object rather than
the type of the object itself.

	
exception mush.context.ContextError(text, point=None, context=None)

	Errors likely caused by incorrect building of a runner.

	
class mush.modifier.Modifier(runner, callpoint, label)

	Used to make changes at a particular point in a runner.
These are returned by Runner.add() and Runner.__getitem__().

	
add(obj, requires=None, returns=None, label=None)

	

	Parameters:	
	obj – The callable to be added.

	requires – The resources to required as parameters when calling
obj. These can be specified by passing a single
type, a string name or a requires object.

	returns – The resources that obj will return.
These can be specified as a single
type, a string name or a returns,
returns_mapping, returns_sequence
object.

	label – If specified, this is a string that adds a label to the
point where obj is added that can later be retrieved
with Runner.__getitem__().

If no label is specified but the point which this
Modifier represents has any labels, those labels
will be moved to the newly inserted point.

	
add_label(label, callpoint=None)

	Add a label to the point represented by this
Modifier.

	Parameters:	callpoint – For internal use only.

	
class mush.declarations.how(type, *names)

	The base class for type decorators that indicate which part of a
resource is required by a particular callable.

	Parameters:	
	type – The resource type to be decorated.

	names – Used to identify the part of the resource to extract.

	
process(o)

	Extract the required part of the object passed in.
missing should be returned if the required part
cannot be extracted.
missing may be passed in and is usually be handled
by returning missing immediately.

	
mush.declarations.nothing = requires()

	A singleton that be used as a requires to indicate that a
callable has no required arguments or as a returns to indicate
that anything returned from a callable should be ignored.

	
mush.declarations.result_type = returns_result_type()

	A singleton indicating that a callable’s return value should be
stored based on the type of that return value.

	
mush.declarations.update_wrapper(wrapper, wrapped, assigned=('__module__', '__name__', '__qualname__', '__doc__', '__annotations__', '__mush__requires__', '__mush_returns__'), updated=('__dict__',))

	An extended version of functools.update_wrapper() [https://docs.python.org/dev/library/functools.html#functools.update_wrapper] that
also preserves Mush’s annotations.

	
class mush.plug.insert(label=None)

	A decorator to explicitly mark that a method of a Plug should
be added to a runner by add_to(). The label parameter
can be used to indicate a different label at which to add the method,
instead of using the name of the method.

	
class mush.plug.ignore

	A decorator to explicitly mark that a method of a Plug should
not be added to a runner by add_to()

	
class mush.plug.append

	A decorator to mark that this method of a Plug should
be added to the end of a runner by add_to().

	
class mush.plug.Plug

	Base class for a ‘plug’ that can add to several points in a runner.

	
add_to(runner)

	Add methods of the instance to the supplied runner.
By default, all methods will be added and the name of the method will be
used as the label in the runner at which the method will be added.
If no such label exists, a KeyError [https://docs.python.org/dev/library/exceptions.html#KeyError] will be raised.

If explicit is True, then only methods decorated with an
insert will be added.

	
explicit = False

	Control whether methods need to be decorated with insert
in order to be added by this Plug.

Installation Instructions

The easyiest way to install Mush is:

pip install mush

Python version requirements

This package has been tested with Python 2.7, 3.3+ on Linux, but is
also expected to work on Mac OS X and Windows.

Development

This package is developed using continuous integration which can be
found here:

https://travis-ci.org/Simplistix/mush

The latest development version of the documentation can be found here:

http://mush.readthedocs.org/en/latest/

If you wish to contribute to this project, then you should fork the
repository found here:

https://github.com/Simplistix/mush/

Once that has been done and you have a checkout, you can follow these
instructions to perform various development tasks:

Setting up a virtualenv

The recommended way to set up a development environment is to turn
your checkout into a virtualenv and then install the package in
editable form as follows:

$ virtualenv .
$ bin/pip install -U -e .[test,build]

Running the tests

Once you have a buildout, the tests can be run as follows:

$ bin/pytest

Building the documentation

The Sphinx documentation is built by doing the following from the
directory containg setup.py:

$ cd docs
$ make html

Making a release

To make a release, just update the version in setup.py,
update the change log, tag it
and push to https://github.com/Simplistix/mush
and Travis CI should take care of the rest.

Once Travis CI is done, make sure to go to
https://readthedocs.org/projects/mush/versions/
and make sure the new release is marked as an Active Version.

Changes

2.7.1 (7 September 2017)

	Use the original’s requirements when the replacement passed to
Runner.replace() has no specified requirements of its own.

2.7.0 (7 September 2017)

	Move to pytest [https://docs.pytest.org/en/latest/] and sybil [http://sybil.readthedocs.io/en/latest/] for testing.

	Drop support for Python 3.3.

	Add update_wrapper() helper.

	Add support for using Python 3 type annotations
to specify requirements and returned resources.

	Add support for arg names being used as
requirements when there is no other configuration.

	Add an explicit way of ignoring the return value of a
callable.

2.6.0 (6 February 2017)

	Allow replacement of a callable to also supply new requirements.

	Officially support Python 3.6.

2.5.0 (23 November 2016)

	Allow Plug instances to be added directly using Runner.add()
and friends.

2.4.0 (17 November 2016)

	Add support for cloning depending on what label was used to add callables.

	Add Runner.add_label() helper to just add a label at the end of the
runner.

	Document and flesh out Plugs.

	Switch to full Semantic Versioning [http://semver.org/].

2.3 (24 June 2016)

	Stop catching TypeError [https://docs.python.org/dev/library/exceptions.html#TypeError] and turning it into a
ContextError when calling a Runner. This turns out
to be massively unhelpful, especially when using Python 2.

2.2 (2 January 2016)

	Add Plug base class.

2.1 (14 December 2015)

	Typo fixes in documentation.

	Indicate that Python 2.6 is no longer supported.

	Raise exceptions when arguments to requires() and returns() are
not either types or labels.

	Allow tuples are lists to be passed to add(),
they will automatically be turned into a requires() or returns().

	Better error messages when a requirement is not found in the
Context.

Thanks to Dani Fortunov for the documentation review.

2.0 (11 December 2015)

	Re-write dropping all the heuristic callable ordering in favour of building
up defined sequences of callables with labelled insertion points.

1.3 (21 October 2015)

	Official support for Python 3.

	Drop official support for Windows, although things should still work.

	Move to Travis CI, Read The Docs and Coveralls for development.

	‘How’ decorators like attr() and item() can now be nested
as well as individually performing nested actions.

	Add returns() and add_returning() as new ways to
override the type of a returned value.

	A better pattern for “marker types”.

1.2 (11 December 2013)

	Use nothing instead of None for marker return types,
fixing a bug that occurred when a callable tried to type-map a
result that was None.

	Add an after() type wrapper for callables that need to wait
until after a resource is used but that can’t accept that resource
as a parameter.

1.1 (27 November 2013)

	Allow runners to be instantiated using other runners.

	Allow Runner.extend() to be passed Runner instances.

	Allow requires() decorations to be stacked.

	Add a Runner.replace() method to aid with testing assembled runners.

1.0 (29 October 2013)

	Initial Release

License

Copyright (c) 2013 Simplistix Ltd, 2015 Chris Withers

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mush	

 	
 	
 mush.context	

 	
 	
 mush.declarations	

 	
 	
 mush.modifier	

 	
 	
 mush.plug	

Index

 _
 | A
 | C
 | E
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | U

_

 	
 	__add__() (mush.Runner method)

 	__call__() (mush.Runner method)

 	
 	__getitem__() (mush.Runner method)

 	__iter__() (mush.requires method)

A

 	
 	add() (mush.context.Context method)

 	(mush.Runner method)

 	(mush.modifier.Modifier method)

 	add_label() (mush.modifier.Modifier method)

 	(mush.Runner method)

 	
 	add_to() (mush.Plug method)

 	(mush.plug.Plug method)

 	append (class in mush.plug)

 	attr (class in mush)

C

 	
 	clone() (mush.Runner method)

 	
 	Context (class in mush.context)

 	ContextError

E

 	
 	explicit (mush.plug.Plug attribute)

 	
 	extend() (mush.Runner method)

H

 	
 	how (class in mush.declarations)

I

 	
 	ignore (class in mush.plug)

 	
 	insert (class in mush.plug)

 	item (class in mush)

M

 	
 	Modifier (class in mush.modifier)

 	mush (module)

 	mush.context (module)

 	
 	mush.declarations (module)

 	mush.modifier (module)

 	mush.plug (module)

N

 	
 	nothing (in module mush.declarations)

O

 	
 	optional (class in mush)

P

 	
 	Plug (class in mush)

 	(class in mush.plug)

 	
 	process() (mush.declarations.how method)

R

 	
 	replace() (mush.Runner method)

 	requires (class in mush)

 	result_type (in module mush.declarations)

 	returns (class in mush)

 	
 	returns_mapping (class in mush)

 	returns_result_type (class in mush)

 	returns_sequence (class in mush)

 	Runner (class in mush)

U

 	
 	update_wrapper() (in module mush.declarations)

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Mush Documentation

 		How Mush works

 		Constructing runners

 		Configuring Resources

 		Specifying requirements

 		Optional requirements

 		Using parts of a resource

 		Specifying returned resources

 		Named resources

 		Using Type Annotations

 		Declarative configuration

 		Default configuration

 		Configuration Precedence

 		Labels

 		Plugs

 		Context manager resources

 		Testing

 		Debugging

 		Example Usage

 		Encapsulating the re-usable parts of scripts

 		Writing the specific parts of your script

 		Assembling the components into a script

 		Cloning

 		Using a factory

 		Testing

 		API Reference

 		Installation Instructions

 		Development

 		Setting up a virtualenv

 		Running the tests

 		Building the documentation

 		Making a release

 		Changes

 		2.7.1 (7 September 2017)

 		2.7.0 (7 September 2017)

 		2.6.0 (6 February 2017)

 		2.5.0 (23 November 2016)

 		2.4.0 (17 November 2016)

 		2.3 (24 June 2016)

 		2.2 (2 January 2016)

 		2.1 (14 December 2015)

 		2.0 (11 December 2015)

 		1.3 (21 October 2015)

 		1.2 (11 December 2013)

 		1.1 (27 November 2013)

 		1.0 (29 October 2013)

 		License

_static/comment.png

_static/plus.png

